US Naval Test Pilot School

Rotary Wing Program Update

Craig R Nixon
Flight Curriculum Manager
WHY HAVE A TEST PILOT?

- Capable of safely operating aircraft before they are “mature”
- Need to find problems early in the program
- The “bridge” between developers and users

“Never take a test pilot to a meeting. When under pressure, they have the annoying habit of blurting out the truth.”
Major Test Pilot Schools

- The end of WW–2 and the dawn of the “Jet Age” spurred the formation of four test pilot schools

- Empire (UK) Test Pilot School
 - Established 1943 at Boscombe Down, England

- USAF Test Pilot School
 - Established 1944 at Wright–Patterson AFB, Ohio
 - Moved to Edwards AFB, California

- USN Test Pilot School
 - Established 1945 at NAS Patuxent River, Maryland

- French Test Pilot School (EPNER)
 - Established 1946, moved to Istres 1962
Established 1945

- Milestone Events
 - Rotary Wing Syllabus 1961
 - 11 Month Syllabus 1973
 - Airborne Systems Syllabus 1975
 - Short Course Department 1997

New Academic/Office Building – 1993
- Staff Spaces
- 120 Seat Auditorium
- 5 Classrooms
- Simulation Labs / IT Support
- Locker rooms
- Exercise Center
- Break Areas with Vending Machines
International Partners

- Royal Air Force
- Royal Swedish Air Force
- Royal Australian Air Force
- Royal Norwegian Air Force
- Royal Netherlands Air Force
- Singapore Air Force
- Finnish Air Force
- Spanish Air Force
- Italian Air Force
- Israeli Air Force
- Swiss Air Force
- German Air Force

- Indian Navy/Air Force
- French Navy/Air Force
- Royal Navy
- Royal Australian Navy
- Canadian Forces
- Japanese Forces
Command Profile

- Academic Instructors – 12
- Flight Instructors – 27
 - 21 Military (multi-service)
 - 3 Civil Service
 - 3 Contractor
- Administrative Staff – 22
 - Operations
 - Budget
 - Facilities
- Maintenance – 187
 - Dyncorp
 - Sikorsky
 - L–3
 - Active Duty
- ~320 Staff/Student/Contractor

- Aircraft
 - 41 aircraft
 - 12 different models
USNTPS People

- **Front Office**
 - Commander, LTC Greg Fortier, USA
 - Executive Officer, LtCol Tim Davis, USMC

- **The Chiefs**
 - CAI, John O’Connor, CDR USN (ret)
 - CFI, CDR Anthony Fortescue, USN

- **Typical Student**
 - Senior O–3
 - 1000 Flight Hours
 - Combat Veteran
 - Engineering Degree
 - They are wonderful
USNTPS Annual Execution

- $45 Million
- 4500 Sorties Flown
- 6500 Flight Hours
- 1100 Academic Hours
- 300 Simulation Periods
- 72 Long Course Students
- 200 Short Course Students
Long Course

- Two Classes Annually
- Three syllabi
 - Fixed Wing (pilot/engineer)
 - Rotary Wing (pilot/engineer)
 - Airborne Systems (NFO/engineer)
- 11 Months in duration
 - Pre-arrival training
 - T-6 NAS Pensacola
 - T-38C Randolph AFB
 - H-72 Grand Prairie, TX
 - H-60 Indian Town Gap, PA
 - ~ 530 Academic hours
 - ~ 100 Sorties/120 flight hours
 - ~ 25 Technical reports
Instructional Flow – Theory to Practice

- Classroom
- Lab and Simulation
- Exercise Briefing
- Flight Demonstration
- Data Flights
- Technical Report
- Review/Debrief/Critique
Rotary Wing Syllabus

- Classes 145 & 146
UH-72A (5)

- Navy Owned (FAA COTS)
- Rotary Wing Syllabus
 - Flying Qualities and Performance
 - Integrated Systems
 - AFCS Eval
 - Fully Instrumented
UH-60L (5)

- Army Owned / Funded Aircraft
- Rotary Wing Syllabus
 - Flying Qualities and Performance
 - Fully Instrumented
OH-58C (4)

- Army Owned / Funded Aircraft
- Rotary Wing Syllabus
 - Flying Qualities and Performance
 - Autorotational Landing Evaluation
 - ADS-33
C-12C (4)

- Army Owned / Funded Aircraft
- Fixed/Rotary Wing Syllabus
 - Multi-Engine Familiarization
 - Asymmetric Power Effects
 - Navigation Systems Evaluation
 - Handling Qualities and Performance
SAAB-340 (1) ASTARS II

• **Primary Systems Aircraft**
 • CALSPAN Owned/Flown
 • Cockpit Mockup
 • HUD
 • 2 Moving maps
 • Instructor Station
 • APG-66(V)2 RADAR
 • MX-15 Electro Optical System
X-26A GLIDER (2)

- Fixed/ Rotary Wing Syllabus
 - High Lift to Drag Evaluation
 - Un-powered Flying Qualities
 - Aerobatics
Qualitative Evaluations
There are still three halves to each day
- Flying
- Academics
- Report Writing

- 530 Academic Hours
- 120 Flight Hours
- 70 Events
- 18 Test Plans (Data Cards > Huge)
- 25 Reports (Oral & Written)
- 15 Different Aircraft
Rotary Wing Performance

- Airspeed Calibration
 - OH–58 with chase aircraft
 - Trailing Bomb
- UH–60 or UH–72 Perf Model Development
 - Engine Performance and Operation
 - Hover IGE & OGE
 - Vertical Climb
 - Level Flight
 - Forward Flight Climb & Descent
- Performance Exam & Checkride
Rotary Wing Handling Qualities

- Introduction to Handling Qualities (UH–72)
- Forward Flight (UH–60)
 - Statics
 - Dynamics
 - Control Response
- Low Airspeed (OH–58)
 - Pace Truck
 - Statics
 - Control Response
 - ADS–33 Course
- HQ Exam & Checkride
Rotary Wing AFCS

- Automatic Flight Controls (UH–72)
 - Flight Control Description
 - System Integration & Displays
 - Control Response Types
 - Normal Operating Modes
 - Attitude Hold (pitch, roll, yaw)
 - Altitude Hold
 - Airspeed Hold
 - Turn Coordination
 - Navigation Modes
 - Degraded Operating Modes
 - Mission Assessment
Autorotations

- Our “Critical Test” Event (OH-58)
- Test Plan
- Initial Familiarization Flight
- Autorotational “Refresher” Flight
- Autorotational Landing Assessment
- Height–Velocity Curve Demonstration
- Class Presentation
Fixed Wing Events

- Familiarization Flights in T–6 & C–12
- Jet Aircraft Orientation Flight (T–38)
- Performance and Stalls (C–12)
- Longitudinal Stability (C–12 / T–6)
- Lateral–Directional Stability (C–12 / U–6)
- Asymmetric Power (C–12)
- High Lift to Drag (X–26)
Variable Stability Exercises

- RW VSS–1 [Sensitivity & Damping] (TPS SIM)
- RW VSS–2 [Advanced Topics] (NRC B–412)
- CALSPAN VSS Lear Jet
 - Longitudinal
 - Lateral–Directional
 - S&C Review/Overview
 - Advanced Flight Controls
 - Develop Control Laws in TPS Simulator
 - Fly and Fix in CALSPAN Lear

- COMING SOON! USNTPS VSS Helo (UH–72)
RW Airborne Systems

- Cockpit Evaluation
- Integrated Systems Demonstration (ASTARS)
- FLIR Lab
- FLIR Evaluation (ASTARS)
- RADAR Systems Familiarization (TPS Sim)
- RADAR Systems Evaluation (MH-60R Sim)
- Over 100 hours of Academics
The Final Exam

- Developmental Test – IIA (DT-2)
 - Team of two
 - International or DoD partners
 - Mini-program from planning to reporting
 - Test Plan (50 pages in five days)
 - Executive Review Board
 - Four flights – six hours
 - Final Report (150 pages in nine days)
Flight Testing Challenges

- Verification and validation of complex integrated systems
- UAS “Autonomy”
- Obtaining and retaining highly qualified testers in the face of a DoD draw-down.
Questions